Magnetically Driven Jets in the Kerr Metric
نویسندگان
چکیده
We compute a series of three-dimensional general relativistic magnetohydrodynamic simulations of accretion flows in the Kerr metric to investigate the properties of the unbound outflows that result. The overall strength of these outflows increases sharply with increasing black hole rotation rate, but a number of generic features are found in all cases. The mass in the outflow is concentrated in a hollow cone whose opening angle is largely determined by the effective potential for matter orbiting with angular momentum comparable to that of the innermost stable circular orbit. The dominant force accelerating the matter outward comes from the pressure of the accretion disk’s corona. The principal element that shapes the outflow is therefore the centrifugal barrier preventing accreting matter from coming close to the rotation axis. Inside the centrifugal barrier, the cone contains very little matter and is dominated by electromagnetic fields. The magnetic fieldlines inside the cone rotate at a rate tied closely to the rotation of the black hole, even when the black hole spins in a sense opposite to the rotation of the accretion flow. These fields carry an outward-going Poynting flux whose immediate energy source is the rotating spacetime of the Kerr black hole. When the spin
منابع مشابه
General Relativistic Simulations of Jet Formation in a Rapidly Rotating Black Hole Magnetosphere
To investigate the formation mechanism of relativistic jets in active galactic nuclei and micro-quasars, we have developed a new general relativistic magnetohydrodynamic code in Kerr geometry. Here we report on the first numerical simulation of jet formation in a rapidly-rotating (a = 0.95) Kerr black hole magnetosphere. We study cases in which the Keplerian accretion disk is both co-rotating a...
متن کاملMagnetically Driven Accretion in the Kerr Metric III: Unbound Outflows
We have carried out fully relativistic numerical simulations of accretion disks in the Kerr metric. In this paper we focus on the unbound outflows that emerge self-consistently from the accretion flow. These outflows are found in the axial funnel region and consist of two components: a hot, fast, tenuous outflow in the axial funnel proper, and a colder, slower, denser jet along the funnel wall....
متن کاملCalculation of the relativistic bulk tensor and shear tensor of relativistic accretion flows in the Kerr metric.
In this paper, we calculate the relativistic bulk tensor and shear tensor of the relativistic accretion ows in the Kerr metric, overall and without any approximation. We obtain the relations of all components of the relativistic bulk and shear tensor in terms of components of four-velocity and its derivatives, Christoffel symbols and metric components in the BLF. Then, these components are deri...
متن کاملMagnetically Driven Accretion Flows in the Kerr Metric I: Models and Overall Structure
This is the first in a series of papers that investigate the properties of accretion flows in the Kerr metric through three-dimensional, general relativistic magnetohydrodynamic simulations of tori with a near-Keplerian initial angular velocity profile. We study four models with increasing black hole spin, from a/M = 0 to 0.998, for which the structural parameters of the initial tori are mainta...
متن کاملSpinning Black Hole Energetics
We discuss black hole energy processes that could serve as the mechanism for relativistic jets. The energy-extraction process of Roger Penrose is presented. The existence of the negative energy region is derived from the extreme Kerr metric. Theoretical limits on the efficiency of the process are discussed. An analogous process for a Kerr-Newman hole is presented. The Blandford-Znajek process i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005